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Abstract

We propose the use of deep convolutional neural net-
works to estimate the transient attributes of a scene from
a single image. Transient scene attributes describe both
the objective conditions, such as the weather, time of day,
and the season, and subjective properties of a scene, such
as whether or not the scene seems busy. Recently, convo-
lutional neural networks have been used to achieve state-
of-the-art results for many vision problems, from object de-
tection to scene classification, but have not previously been
used for estimating transient attributes. We compare several
methods for adapting an existing network architecture and
present state-of-the-art results on two benchmark datasets.
Our method is more accurate and significantly faster than
previous methods, enabling real-world applications.

1. Introduction

Outdoor scenes experience a wide range of lighting
and weather conditions which dramatically affect their ap-
pearance. A scene can change from rainy and brooding
to sunny and pleasant in a matter of hours, even min-
utes. The ability to quickly understand these fleeting,
or transient, attributes is a critical skill that people often
take for granted. Automatically understanding such sub-
tle conditions has many potential applications, including:
improving context-dependent anomaly detection [5]; en-
abling attribute-oriented browsing and search of large im-
age sets[13, 29]; estimating micro-climate conditions us-
ing outdoor webcams [9]; as a pre-processing step for
higher-level algorithms for calibration [12, 31], shape esti-
mation [4, 32], geolocalization [ 14, 33]; and environmental
monitoring [10].

We propose a fast method for predicting transient at-
tributes from a single image using deep convolutional neu-
ral networks (CNNs). CNNs have been used to obtain state-
of-the-art results for many vision tasks, including object
classification [16], object detection [8], and scene classi-
fication [36] but have not been used to estimate transient
scene attributes. Our work addresses two specific problems
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Figure 1: Our method predicts transient scene attributes
from a single image using a deep convolutional neural
network. For a subset of attributes, the predicted values
(green=attribute present, gray=uncertain, red=attribute ab-
sent) are shown for three example images.

related to estimating transient scene attributes. First, the
problem of estimating whether it is sunny or cloudy [22],
and second, predicting the degree to which various tran-
sient attributes are present in the scene [18]. To this end, we
present two different networks and three different training
initializations. Our methods achieve state-of-the-art results
on two benchmark datasets and are significantly faster than
previous approaches. Figure 1 shows an overview of our
method.

The key contributions of this work are: 1) proposing sev-
eral CNN training initializations for predicting transient at-
tributes, 2) evaluating the proposed methods on two bench-
mark datasets, 3) releasing pre-trained networks for clas-
sifying transient scene attributes in a popular deep learning
framework, and 4) demonstrating several applications of the
networks to webcam image understanding.



1.1. Related Work

Attributes are high-level descriptions of a visual prop-
erty which offer some additional semantic context for un-
derstanding an object, activity, or scene. For example, a
green apple or a cloudy day. Representations based on such
visual attributes have become increasingly popular in the
vision community as they offer the ability to to generalize
across categories. The first learning-based methods to take
advantage of such high-level attributes arose for the task
of object recognition [7, 20], demonstrating the power of
learning by description. Many methods were quick to fol-
low suit, with applications ranging from content-based im-
age retrieval [28] to characterizing facial appearance [17].
Given their prowess, a significant amount of research has
focused on identifying useful attributes [6] and crafting
techniques to accurately detect them in images [30].

More recently, efforts have been made to adapt such
attribute-based representations for outdoor scene under-
standing, where the appearance of a scene can change dras-
tically over time. Patterson and Hays [25] constructed the
SUN attribute dataset using crowd-sourcing techniques to
identify a taxonomy of 102 scene attributes from human
descriptions, designed to distinguish between scene cate-
gories. Lu et al. [22] use this dataset, along with two others,
to classify images as either sunny or cloudy. Similarly, Laf-
font et al. [18] introduced the Transient Attributes dataset,
focused instead on perceived scene properties and attributes
that describe intra-scene variations. They defined 40 such
attributes and presented methods for identifying the pres-
ence of those attributes as well as applications in photo or-
ganization and high-level image editing via attribute ma-
nipulation. To the best of our knowledge, we are the first
to explore the application of convolutional neural networks
for estimating transient scene attributes.

1.2. Background

Convolutional neural networks have been used exten-
sively in recent years to obtain state-of-the-art results on a
wide variety of computer vision problems. In this work,
we focus on a particular CNN architecture, often called
AlexNet, introduced by Alex Krizhevsky et al. [16] for
single-image object classification. This network has eight
layers with trainable parameters: five convolutional layers
(each connected in a feed-forward manner) with pooling
layers between each convolutional layer and three fully con-
nected layers. The network parameters are selected by min-
imizing a softmax loss function. Essentially, the convolu-
tional layers extract features from across the image and the
fully connected layers combine these features to obtain a
score for each possible class. The final classification de-
cision is obtained by choosing the class with the highest
output score.

While this network architecture was originally devel-

oped for single-image object classification, it has been
shown to be adaptable to other problem domains. If the
new problem involves multi-class classification, all that is
needed is to modify the final fully connected layer to have
the correct number of output classes. Then, the network
weights can be fine-tfuned by running iterations of stochas-
tic gradient descent on the training data for the new prob-
lem [35]. The key is to start the optimization with random
weights for the new final layer and weights from an already
trained network for the other layers, for example using the
weights from the original AlexNet [16], as an initial condi-
tion. If there is a large amount of training data available
for the new domain, it is also possible to train the network
from scratch by randomly initializing all weights [36]. For
regression problems, the loss function is usually changed,
often replacing the softmax loss with an L loss.

2. Estimating Transient Attributes with CNNs

We propose the use of deep convolutional neural net-
works for estimating transient scene attributes. We develop
networks for two single-image problems: the classification
problem of estimating whether it is sunny or cloudy and a
collection of regression problems for representing the de-
gree to which a large number of transient attributes exist in
the scene. For each of these problems, we use three dif-
ferent networks as starting conditions for optimization, re-
sulting in a total of six networks. For both problems, we
use the AlexNet CNN architecture, described in the previ-
ous section. The remainder of this section describes how
we estimate network weights for each of these networks.

CloudyNet: For the problem of classifying whether an
image is sunny or cloudy, we use the data provided by
Lu et al. [22] to train our network, which we call Clou-
dyNet. The dataset contains 10 000 images collected from
the SUN Database [34], the LabelMe Database [27], and
Flickr. Each image is assigned a ground-truth binary la-
bel, sunny or cloudy, by a human rater. We convert AlexNet
into CloudyNet by modifying the network architecture; we
update the final fully connected layer to have two output
nodes.

TransientNet: For the more challenging problem of es-
timating the presence of a broad range of attributes in an
image, we use the dataset introduced by Laffont et al. [18].
The dataset contains images from outdoor webcams in the
Archive of Many Outdoor Scenes [ 13] and the Webcam Clip
Art Dataset [19]. The webcams span a wide range of out-
door scenes, from urban regions to wooded, mountainous
regions. Each webcam has 60-120 images captured in a
wide range of conditions at different times of the day and
on different days of the year. The final dataset consists of
8571 high resolution images from 101 webcams. The au-
thors define a set of 40 transient attributes, each of which



Table 1: Two class weather classification accuracy.

’ Method \ Normalized Accuracy ‘
Lu et al. [22] 53.1+2.2
CloudyNet-1 85.7+0.5
CloudyNet-P 86.1 £ 0.6
CloudyNet-H 87.1+0.3

Table 2: Transient attribute prediction errors.

Method | Average Error

Laffont et al. [ 18] 4.2%

TransientNet-I 4.05%
TransientNet-P 3.87%
TransientNet-H 3.83%

is assigned a value between zero and one, representing the
confidence of that attribute appearing in an image. We mod-
ify the AlexNet network architecture by changing the final
fully connected layer to have 40 output nodes, one for each
transient attribute, and updating the loss function to an Lo
loss. We call the resulting network TransientNet.

Network Training: For each network architecture, we
start the training procedure from three different initial con-
ditions, resulting in six distinct sets of network weights. The
first set of initial conditions were taken from a network that
was was trained for object classification on 1.2 million im-
ages with 1000 object class from the ImageNet ILSVRC-
2012 challenge [26]. We call the networks that result from
this fine-tuning process CloudyNet-I and TransientNet-I.
The second set of initial conditions were taken from a net-
work [36] that was trained for scene classification on 2.5
million images with labels in 205 categories from the Places
Database [360]. We call the resulting networks CloudyNet-P
and TransientNet-P. The final set of initial conditions were
taken from a network [36] that was trained for both object
and scene classification. This hybrid network was trained
on a combination of the Places Database [36] and images
from the training data of ILSVRC-2012 challenge [26]. The
full training set contained 205 scene categories from the
Places Database and 978 object categories from ILSVRC-
2012 containing about 3.6 million images. We call the re-
sulting networks CloudyNet-H and TransientNet-H.

Implementation Details: Our networks are trained using
the Caffe [15] deep learning framework, the CaffeNet ref-
erence network architecture (a variant of AlexNet), and pre-
trained networks from the Caffe Model Zoo [1]. The full
network optimization definition, the final network weights,
and the output from our methods are available on the
project webpage (http://cs.uky.edu/~rbalten/
transient).
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Figure 2: A snapshot of three attributes over a week of we-
bcam data. The highlighted images show the scene at the
given point in time.

3. Evaluation

We evaluated our networks on two benchmark datasets.
The results show that our proposed approaches are signifi-
cantly faster and more accurate than previous methods.

3.1. Two-Class Weather Classification

We evaluated our three CloudyNet variants using the
dataset created by Lu et al. [22] (introduced in Section 2).
We follow their protocol for generating a train/test split: we
randomly shuffle sunny/cloudy images and then select 80%
of each class for training and 20% for testing. This pro-
cess is repeated five times resulting in five random 80/20
splits of the data. Table 1 compares the mean normalized
accuracy and variance for our networks against the pre-
vious best technique. The normalized accuracy, which is
the proposed evaluation metric by Lu et al., is calculated
by max{((a — 0.5)/0.5),0}, where a is the traditionally
obtained accuracy. All three of our networks outperform
the state-of-the-art for two class weather classification with
CloudyNet-H predicting the most accurately.

3.2. Transient Attribute Estimation

We evaluated our three TransientNet variants on the
dataset created by Laffont et al. [18]. We use the same hold-
out train/test split in which images from 81 webcams are
used for training and images from a distinct set of 20 other
webcams are used for testing. TransientNet-H has the low-
est overall average error as shown in Table 2. TransientNet-
P and TransientNet-H have similar performance, mostly due
to them being pre-trained on similar sets of data.

In addition to having higher accuracy, our method is sig-
nificantly faster. For a single image, we found Laffont et
al’s method takes an average of 3.486 seconds, but our
method only requires 0.192 seconds, an 18x speed up.
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3.3. Example Results

As qualitative evaluation, Figure 2 shows the time series
of the predicted value (using TransientNet-H) for three at-
tributes (night, daylight, and snow) from an AMOS [13] we-
bcam over the period February 16th, 2013 to February 23rd,
2013. Note that no temporal smoothing was performed,
these are raw per-image estimates. The inverse relationship
between the daylight and night time series can be clearly
seen. Figure 2 also shows images of the scene captured at
different times, highlighting snowy and non-snowy periods.

Figure 3 shows semantic average images for a single
scene. Each image is the average of the 100 images with
the highest score for a particular attribute. The subset of at-
tributes shown in Figure 3 represent a wide variety of con-
ditions of the scene. The seasonal attributes (autumn, sum-
mer, winter) show how the scene changes throughout the
year and lighting attributes (sunrise/sunset, daylight, night)
show the scene in various lighting conditions. Such images
are easy to create and highlight the ability of our proposed
technique to work across a broad range of conditions and
scene types.

Figure 4 shows examples of images with an attribute that
TransientNet-H mislabeled: a white-sand beach that was la-
beled as being a snowy image and a lit sports arena at night
that was labeled as being a daylight image. Figure 5 shows
examples of misclassified images using CloudyNet-H: an
overcast scene of a mansion that was classified as sunny
and a clear scene of a country home that was classified as
cloudy.

3.4. Rapidly Labeling Sub-Images

We convert the final, fully connected layers of Transient-
Net to be convolutional [21] with the same number of out-
puts. The output from this new, “fully convolutional” net-
work allows us to create images showing an attribute’s value
across an input image, as shown in Figure 6. The values
for each attribute can be visualized in a single channel im-
age. Combining three of these images results in the com-
posite images. Figure 6a shows a composite image using
the sunny, lush, and snow attributes as the color channels.
There are no snowy areas in the input image, shown in the
blue channel, and the bottom of the image contains high val-
ues for the lush attribute, shown in the green channel. The
sunny attribute is higher towards the horizon and middle of
the sky, shown in the red channel, possibly due to the sky
being brighter in these regions. Figure 6b shows a compos-
ite image using the sunny, storm, and snow attributes as the
color channels. The image has low values for the sunny at-
tribute, shown in the red channel, and high values for the
storm attribute, show in the green channel. The storm at-
tribute is higher in the overcast sky towards the top of the
composite image. The snow covered ground appears in the
blue channel with high values for the snow attribute around

sunrise/sunse

Figure 3: The average of the 100 most confident images for
a subset of transient attributes from a given webcam.

(a) Mislabeled snow (b) Mislabeled daylight

Figure 4: Two failure cases using TransientNet and their
mislabeled attribute.

(a) Misclassified as sunny

(b) Misclassified as cloudy

Figure 5: Two failure cases using CloudyNet and their mis-
classified class.

the middle of the image and a dark spot corresponding to
the waterway in the scene.



Original Image

Composite Image

Color Channels

(a) RGB = [sunny, lush, snow]

Original Image Composite Image

Color Channels

(b) RGB = [sunny, storm, snow]

Figure 6: Composite images generated using the fully con-
volutional TransientNet-H. Brighter areas in each of the
color channels indicate a higher attribute value.

4. Applications

Our proposed method is both faster and more accurate
than previous methods, and has potential application to
many real-world problems. Here we explore applications
to webcam imagery, including: 1) supporting automatic
browsing and querying of large archives of webcam images,
2) constructing maps of transient attributes from webcam
imagery, and 3) geolocalizing webcams.

4.1. Browsing and Querying Webcam Archives

Webcam collections such as AMOS [13] contain thou-
sands of geolocated webcams with years of archived data.
Searching for scenes, and images, with a set of desired at-
tributes is currently a time-consuming manual process. For
example, when working on outdoor photometric stereo [4],
it is common to manually filter out all cloudy images. We

(c) Snow

Figure 7: Example attribute summaries over a year
of webcam data (green=attribute present, gray=uncertain,
red=attribute absent, white=no data). The highlighted im-
ages are denoted by the blue dots within each attribute sum-
mary.

simplify this process by using TransientNet to tag images
and webcams with certain attributes. If an attribute is above
a threshold (e.g., t, = 0.75), the image is labeled with that
attribute. The opposite is true as well. If an attribute is be-
low a threshold (e.g., t; = 0.25), the attribute is added to
a list of attributes the image does not have. This enables
users to find, for example, images that are both snowy and
sunny using queries such as “sunny” or “not winter”. La-
beling is done on the image level as well as the webcam
level. Attributes that are uniquely high for a webcam (i.e.,
P(label|camera) > P(label|all cameras)) are used to
tag the webcam. A labeling scheme like this one allows
a user to, for example, search for the snowy images from
a mysterious webcam. This allows for easier searching of
large collections of webcams.



(d) January 1st, 2014

(b) January 15th, 2014

(e) January 15th, 2014

(f) January 29th, 2014

Figure 8: Maps of the snow attribute from webcam data (bottom) across the continental United States in January 2014 and
the corresponding map of snow depth created using remote sensing data (top) [2].

Figure 9: Map of the snow attribute from Figure 8f with
three highlighted snowy images.

To support rapid browsing of a large webcam image col-
lection, we create summaries of the transient attributes es-
timated by TransientNet. Figure 7 summarizes a year of
images from AMOS webcams. Figure 7a shows one year
of the daylight attribute, Figure 7b shows one year of the
clouds attribute, and Figure 7c shows one year of the snow
attribute. Each column in the summary is a single day and
each row a different time of the day (in 30 minute inter-
vals). Each pixel is colored based on the attribute value for
the corresponding webcam image. Attributes such as snow,
cold, and winter have higher values in the winter months
and lower values during the summer months. The night
and daylight attributes clearly show the day/night cycle for
the location of the image. Properties about the scene can
be inferred from these summaries. Consistently high val-
ues for the glowing attribute at night indicate the presence

of streetlights and/or other man made light sources in the
scene. Such visualizations are more robust to camera mo-
tion and more semantically meaningful than those based on
PCA[11].

4.2. Mapping Weather Using Webcams

We show how to use webcams with known locations
to capture the geospatial distribution of transient attributes.
We downloaded data for January 2014 from 3 500 AMOS
webcams across the United States. The images were la-
beled using TransientNet-H to create a sparse distribution
of points. We then used locally weighted averaging to es-
timate the attribute map. This differs from the technique
proposed by Murdock et al. [23, 24] in that our method uses
a single model to make predictions for all cameras, while
Murdock et al. create camera-specific models.

Figure 8 shows three maps for the snow attribute across
the continental United States. Data from January 2014
for AMOS webcams within the continental United States
and the southern edge of Canada was downloaded and la-
beled using TransientNet-H. These maps show predicted
snow coverage using only the snow attribute. Variation be-
tween the three maps shows snow accumulating and melt-
ing throughout the month. Anomalous regions of high snow
values, such as those along the California coast, come from
false positive labels. One such region comes from a cam-
era facing a white-sand beach, which appears visually sim-
ilar to a snowy scene. Several cameras of this nature were
manually pruned from the dataset. Figure 9 shows example
images from selected webcams on January 29th, 2014. The
first two example images show heavy snow cover in north-
ern areas and the third example image shows the light snow
cover in the south-eastern region of the United States. Maps
for other attributes show expected natural phenomena (the
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Figure 10: Webcam geolocalization errors for two meth-
ods. (top) Using the sunny attribute. (bottom) Using the
first PCA coefficient.

daylight attribute increasing/decreasing east to west as the
sun rises/sets) and cues about the natural world (the rugged
attribute higher in the mountainous west and low in the cen-
tral plains).

4.3. Transient Semantics for Geolocalization

Given a sufficient amount of time, the temporal pattern
of the transient attributes is a unique fingerprint of a loca-
tion. Based on this observation, we propose a robust method
for geolocalizing outdoor webcams. We adopt the frame-
work of [14], in which the webcam location is found by
relating temporal variations of georegistered satellite im-
agery and the time series of features extracted from web-
cam images. The estimated camera location is the center
of the satellite pixel for which the intensity is most corre-
lated with the webcam time series. The only change from
the original work is replacing the PCA coefficients (which
are unsupervised, but camera specific) with the transient at-
tributes (which are supervised, but not camera specific).

For evaluation, we downloaded a year (2013) of images

Figure 11: Distribution of webcams used in our geolocal-
ization experiments.

Figure 12: Webcam geolocalization results using the sunny
attribute. (left) Webcam images and (right) estimated cor-
relation maps, where orange means more likely. Ground-
truth locations are marked by green dots, predictions by
blue squares.

from 180 randomly selected webcams (Figure 11) from the
AMOS dataset [13] and corresponding satellite images [3].
We found that the sunny attribute provided the most ac-
curate results and use it for all further figures. Figure 12
visualizes geolocalization results for several webcams and
Figure 10 shows quantitative results. Our method localizes
58% of webcams within 250km from the ground truth. As
a baseline method, we repeated the experiment with the top
5 PCA coefficients. The best coefficient (the first) only lo-
cates 14% of webcams within 250km. We think the main
advantage of using the transient attribute for this task is that
it is less sensitive to camera jitter, a significant problem
when applying PCA to outdoor webcam data. When the
camera jitters it is likely that the PCA coefficients encode
for motion, not changes visible in satellite imagery.



5. Conclusions

We introduced a fast method for predicting transient
scene attributes in a single image. Our method achieves
state-of-the-art performance on two benchmark datasets, re-
quires no hand-engineered features, is simple to train, and is
very fast at test time. In addition, it can be quickly extended
to label additional attributes or adapted to new datasets with
a small amount of retraining. Together, these properties
make it particularly well suited to real-world applications,
of which we demonstrated several.
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